Nanothermometer using single crystal silver nanospheres.

نویسندگان

  • Yucheng Lan
  • Hui Wang
  • Xiaoyuan Chen
  • Dezhi Wang
  • Gang Chen
  • Zhifeng Ren
چکیده

Conventional thermometers have been widely employed in scientific researches and industrial applications. Thermometers with nanometer scaled spatial resolution attract more and more attentions recently with the rapid development of nanotechnology and nanoengineering. Many kinds of nanothermometers have been designed by duplicating the conventional thermometers at nanoscale through decreasing the geometrical size of the conventional thermometers. For example, nanoscale thermocouples are fabricated from nano-junctions based on Seebeck effect, liquid-in-tube nanothermometers from nanotubes based on temperature-dependent thermal expansion of liquid, nanosized fluorescence thermometers from nanoparticles based on temperature-dependent photoluminescence, nanoscale infrared thermometers from metal nanoparticles based on blackbody radiation, Coulomb Blockade nanothermometers from nanosized superconductor-insulator-metal tunnel junctions based on the Coulomb blockade of tunneling, and complex structured nanothermometers from MicroElectro-Mechanical-Systems based on temperature-dependent resonator quality factor or Fermi-level shift, etc. In all of these nanothermometers, the physical properties such as the voltage in nanoscale thermocouples, volume of liquid in liquid-in-tube nanothermometers, or photoluminescence spectrum in nanosized fluorescence thermometers are restored to their original state at room temperature after the temperature drops from high temperature. These nanothermometers are usually employed in real-time and in situ temperature detection, but not for recording and readout later, which is not useful for the situation where real-time readout is not possible like in the case of explosion, but the open-ended gallium-filled carbon nanotube thermometers can in principle also be a readout device after the event. Here another kind of nanothermometers, ex situ nanothermometers, which can record the temperature they were exposed to and be read later when the event is over, are demonstrated to measure temperature based on temperature-dependent size distribution and areal density of metal nanospheres. Compared with the reported nanothermometers, the nanothermometers made of nanospheres with a nanometer scaled spatial resolution, described in this paper, can record the highest temperature in the event and be read at a later time after the event is over. Figure 1a shows the deposited silver nanoparticles before being heated. Silver nanoparticles aggregate on the carbon supporting film coated on TEM grid. The shape of the nanoparticles is irregular and the size varies from 10nm to 100 nm. After heating to a certain temperature, smaller silver nanoparticles nucleate and grow on the whole carbon film (Fig. 1b). It is speculated that the surface diffusion causes the nucleation and growth of the new nanoparticles. Statistical analysis shows that all the nucleated nanoparticles are spherical with an average circularity M1⁄4 0.82–0.85. So these nucleated nanoparticles are named as nanospheres. The spherical morphology of the nanospheres should come from the surface melting because of melting point depression. The inset in Figure 1c shows a high-resolution TEM (HRTEM) image of a nanosphere with diameter of 16 nm observed at 500 8C. The surface of the silver nanosphere melts at 500 8Cwhile the melting point of bulk silver is 961 8C, a direct observation of the significant melting point reduction of nanosized silver particles. Themelting liquid layer covers the nanospheres, conceals the lowest-energy growth facets, and forms perfect spheres because of surface tension. When the surface-melted nanospheres cool down quickly from heating temperature, the main spherical shape is kept. High magnification TEM images (Fig. 1c) show that the nucleated nanospheres distribute uniformly on the carbon film and the size distribution of the nanospheres is narrow. HRTEM image of the nanospheres (Fig. 1d) indicates that the nanospheres are single crystalline at room temperature. EDS spectrum (Fig. 1e) and selected area electron diffraction of the nanospheres (Fig. 1f) confirm that the nucleated nanospheres are silver with face-centered cubic structure. Figure 2 shows the room temperature TEM images, size distribution, and the average diameter of the nanospheres after heating at different annealing temperatures and cooling down. Each sample was heated at a certain heating temperature for 5min and then cooled down to room temperature for TEM examination. TEM images (Fig. 2a) show that the nucleated nanospheres are smaller with heating at 300 8C than those at 500 8C. Histogram of the nanospheres (Fig. 2b) indicates that the diameter of most nanospheres is 4 nm after heating at 300 8C and 14 nm at 700 8C. The average diameter is systematically larger with higher heating temperature (Fig. 2c) because of coalescence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Femtosecond response of a single metal nanoparticle.

The ultrafast nonlinear optical response of a single metal nanoparticle is investigated by combining a high-sensitivity femtosecond pump-probe setup with a spatial modulation microscope. Experiments are performed on 20 and 30 nm silver nanospheres, in situ characterized via their optical linear extinction spectrum. The measured transient response permits investigation of the electron-phonon ene...

متن کامل

Shape-controlled synthesis of metal nanostructures: the case of silver.

The concept of shape-controlled synthesis is discussed by investigating the growth mechanisms for silver nanocubes, nanowires, and nanospheres produced through a polymer-mediated polyol process. Experimental parameters, such as the concentration of AgNO(3) (the precursor to silver), the molar ratio between poly(vinylpyrrolidone) (PVP, the capping agent) and AgNO(3), and the strength of chemical...

متن کامل

Spectral and directional reshaping of fluorescence in large area self-assembled plasmonic-photonic crystals.

Spectral and directional reshaping of fluorescence from dye molecules embedded in self-assembled hybrid plasmonic-photonic crystals has been examined. The hybrid crystals comprise two-dimensional hexagonal arrays of dye-doped dielectric nanospheres, capped with silver semishells. Comparing the reshaped fluorescence spectra with measured transmission/reflection spectra and numerical calculations...

متن کامل

Theoretical Study of the Local Surface Plasmon Resonance Properties of Silver Nanosphere Clusters

The local surface plasmon resonance properties in systems consisting of silver nanosphere clusters are studied by Green's function. The extinction, absorption, and scattering efficiencies band of two, three, and more silver nanospheres clusters are discussed in detail. The clusters show new types of the local surface plasmon resonances compared with single silver nanosphere. Our results suggest...

متن کامل

Luminescence and scintillation characterization of Silver doped KCl single crystal grown by Czochralski technique for photonic applications

In this study, the scintillation and optical properties of pure and silver doped potassium chloride (KCl:Ag) single crystals were reported. Pure and doped KCl bulk single crystals with a good optical quality and free from cracks were grown from the melt using Czochralski technique. Different analysis methods were used to study the optical and scintillation properties of the grown crystals. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced materials

دوره 21 47  شماره 

صفحات  -

تاریخ انتشار 2009